Wednesday

Spatial filtering, Remote Sensing. Low-pass filter. High-pass filter

Spatial filtering encompasses another set of digital processing functions which are used to enhance the appearance of an image. Spatial filters are designed to highlight or suppress specific features in an image based on their spatial frequency. Spatial frequency is related to the concept of image texture.


It refers to the frequency of the variations in tone that appear in an image. "Rough" textured areas of an image, where the changes in tone are abrupt over a small area, have high spatial frequencies, while "smooth" areas with little variation in tone over several pixels, have low spatial frequencies. A common filtering procedure involves moving a 'window' of a few pixels in dimension (e.g. 3x3, 5x5, etc.) over each pixel in the image, applying a mathematical calculation using the pixel values under that window, and replacing the central pixel with the new value. The window is moved along in both the row and column dimensions one pixel at a time and the calculation is repeated until the entire image has been filtered and a "new" image has been generated. By varying the calculation performed and the weightings of the individual pixels in the filter window, filters can be designed to enhance or suppress different types of features.


Low-pass filter

A low-pass filter is designed to emphasize larger, homogeneous areas of similar tone and reduce the smaller detail in an image. Thus, low-pass filters generally serve to smooth the appearance of an image. Average and median filters, often used for radar imagery are examples of low-pass filters.


High-pass filters do the opposite and serve to sharpen the appearance of fine detail in an image. One implementation of a high-pass filter first applies a low-pass filter to an image and then subtracts the result from the original, leaving behind only the high spatial frequency information. Directional, or edge detection filters are designed to highlight linear features, such as roads or field boundaries. These filters can also be designed to enhance features which are oriented in specific directions. These filters are useful in applications such as geology, for the detection of linear geologic structures.


Tuesday

Grey level thresholding. Level slicing. Contrast stretching lo p

Grey level thresholding.

Level slicing.

Contrast stretching.


Image enhancement


Lillesand and Kiefer (1994) explained the goal of image enhancement procedures is to improve the visual interpretability of any image by increasing the apparent distinction between the features in the scene. This objective is to create "new" image from the original image in order to increase the amount of information that can be visually interpreted from the data.


Enhancement operations are normally applied to image data after the appropriate restoration procedures have been performed. Noise removal, in particular, is an important precursor to most enhancements. In this study, typical image enhancement techniques are as follows:


Grey level thresholding


Grey level thresholding is a simple lookup table, which partitions the gray levels in an image into one or two categories - those below a user-selected threshold and those above. Thresholding is one of many methods for creating a binary mask for an image. Such masks are used to restrict subsequent processing to a particular region within an image.


This procedure is used to segment an input image into two classes: one for those pixels having values below an analyst- defined gray level and one for those above this value. (Lillesand and Kiefer, 1994).


Level slicing


Level slicing is an enhancement technique whereby the Digital Numbers (DN) distributed along the x-axis of an image histogram is divided into a series of analyst-specified intervals of "slices". All of DNs falling within a given interval in the input image are then displayed at a single DN in the output image (Lillesand and Kiefer, 1994).


Contrast stretching


Most satellites and airborne sensor were designed to accommodate a wide range of illumination conditions, from poorly lit arctic regions to high reflectance desert regions. Because of this, the pixel values in the majority of digital scenes occupy a relatively small portion of the possible range of image values. If the pixel values are displayed in their original form, only a small range of gray values will be used, resulting in a low contrast display on which similar features night is indistinguishable.


A contrast stretch enhancement expands the range of pixel values so that they are displayed over a fuller range of gray values. (PCI, 1997)


Generally, image display and recording devices typically operate over a range of 256 gray levels (the maximum number represent in 8-bit computer encoding). In the case of 8-bit single image, is to expand the narrow range of brightness values typically present in an output image over a wider range of gray value. The result is an output image that is designed to accentuate the contrast between features of interest to the image analyst (Lillesand and Kiefer, 1994).

The grey level or grey value indicates the brightness of a pixel. The minimum grey level is 0. The maximum grey level depends on the digitisation depth of the image. For an 8-bit-deep image it is 255. In a binary image a pixel can only take on either the value 0 or the value 255.



Folding. Geomorphology. Geography.

Folding. Geomorphology. Geography.